/v

AARHUS UNIVERSITET

Software Engineering
and Architecture

Mandatory Reflections

Y Congrats !

AARHUS UNIVERSITET
* You have covered a lot of ground!

« There are only three out of nine exam topics that we still
have to cover!
— And one of these (frameworks) is actually more or less covered...

/v StudyCafe Experience

AARHUS UNIVERSITET

* Private Interface?

— Perhaps should be renamed to ‘friend interface’

* Your friends are allowed to ‘make more private requests’ than a
stranger is...

« S0, a Card should expose a ‘private interface’ to its good
friend, the Game,
— “Dear Game, you are allowed to change my health”
— Whereas, a stranger (the Ul) is not...
— Interface MutableCard extends Card { void changeHealth(...); }

/v Stubs vrs Spies

AARHUS UNIVERSITET

« Stub/Spy are categories of test doubles
— l.e. they are roles a double may play
— And it may play both and often do!

* Indeed — to make a MutableGameSpy work so it can help
us test the card effects, it needs to feed ‘stub’ indirect
iInput.

— Example: Brown Rice effect likely needs to call
‘game.getPlayerinTurn()’ to compute the opponent...

My ‘spy’

class SpyMutableGame implements InternalMutableGame { & usage:

public Player getPlayerInTurn() { return playerInTurn; }
public void setPlayerInTurn(Player player) { playerInTurn = player; }

i Static Fields?
AARHUS UNIVERSITET

// HotstoneFactory.java

public class HotstoneFactory { .
!/ BetaFactory.java

public final ManaStrategy mana;

public final DeckStrategy deck; public class BetaFactory {
public final HeroSetupStrategy heroes; public{ static final HotstoneFactory BETA)= new HotstoneFactory(

public final FatigueStrategy fatigue; G . BvE 4
public final WinConditionStrategy win; new hrowingbyroun l”’

public final HeroPowerStrategy powers; // ny new DefaultDecks(),
new BabyHeroesBoth(),

public HotstoneFactory(new BEtaFatlEuezE}’

new ZercHealthWins(),
ManasStrategy mana, new NoHeroPowers()
DeckStrategy deck,
HeroSetupstrategy heroes,
FatigueStrategy fatigue, }
WinConditionStrategy win,
HeroPowersStrategy powers)
{ J// StandardGame.java
this.mana = mana; public StandardHot5toneGame(HotstoneFactory factory) { ... T
this.deck = deck; }

' «interface»
this.heroes = heroes;

Client AbstractFactory
this.fatigue = fatigue; createProductA()
«interface»

this.win = win; createProductB()

. ProductA
this.powers = powers; d A
ConcreteFactory1
ublic HeroPowerStrate etHeroPowsrstrate ConcreteProductA1 | | ConcreteProductA2 createProductA()
P & 8 ey() { createProducts()
return powers; ¢ I
1 ConcreteFactory2
«interface» [
ProductB createProductA()
createProductB()

CS@AU Henrik Baerbak Christensen icvncre';Productsz

- GameFactory?

AARHUS UNIVERSITET

» Factories do not create Games !
— In the UML’ It translates to public class AlphaFactory implements HotStoneFactory {

@0verride

Factory Create Client! public StandardHotStoneGame createHotStoneGame() |

Client Aéﬁﬁﬁiilw WinCon winConAlpha = new AlphaWin();
‘ createProductA() ManaCon manaConAlpha = new AlphaManaCon();
i ProductB,
¢intarfacey resteProauetE) S0GCon sogConAlpha = new AlphaSOGCon();

ProductA

InitializeHeroCon iniHercConAlpha = new AlphaHeroCon();

ConcreteFactory1 IniCardCon iniCardConAlpha = new AlphaIniCardCon();

createProductA() | HeroPowerCon heroPowerCondAlpha = new AlphaHeroPowerCon();
createProductB() ;

ConcreteFactory2

|| createProducta() return new StandardHotStoneGame (
createProductB()
Player.FINDUS,
winConAlpha,

manaConAlpha,
sogConAlpha,
iniHeroConAlpha,
iniCardConAlpha,
heroPowerConAlpha

CS@AU Henrik Baerbak Christensen 6

AARHUS UNIVERSITET
* A bit of both?

« ‘createFactory() return
game?

o _______AndaMix

« “This is an apple”

»

CS@AU Henrik Beer§

\ 4
AARHUS UNIVERSITET

ProductFactory!

» Factories creates the delegates that client uses

public class AlphaStoneFactory implements DomainFactory { & Henr

private RandomMNumberStrategy randomNumberStrategy = new ProductionRandomNumberStrategy(); WE:

public ManaProductionStrategy createManaProductionStrategy() { return new Always3ManaPerTurnStrategy(

public WinnerFindingStrategy createWinnerFindingStrategy() { return new FindusWinsAtRound4Strategy();

: «interface»
Client AbstractFactory
createProductA()
«interface» createProductB()
ProductA d /\
AN ConcreteFactory1
ConcreteProductA1 ConcreteProductA2 createProductA() '
createProductB() i
1 1 f
ConcreteFactory2
«interface»
ProductB createProductA()
~ createProductB()
d ConcreteProductB2
ConcreteProductB1

public AttackValidationStrategy createCategoryMoveValidationStrategy() { return new NullAttackValidationStrategy(); }

public DeckBuildingStrategy createDeckBuildingStrategy() { return new Spanish7CardDeckBuildingStrategy(); }

public HeroBuildingStrategy createHeroBuildingStrategy() { return new BabyHeroBuildingStrategy(); }

public RandomMumberStrategy getRandomNumberStrategy() { return randomNumberStrategy; }

CS@AU

Henrik Baerbak Christensen

b Factories Create stuff

AARHUS UNIVERSITET
« Important naming of methods

public class AlphaStoneFactory implements DomainFactory { 2 Henrik Beerbak @ coffeelake.small22 <hbc@cs.au.dis +1
// Default to random number generator

private RandomNumberStrategy randomNumberStrategy = new ProductionRandomNumberStrategy(); 1usage

@DVEPPiCe 5 overrides 2 Henrik Beephak) PR PN e L PP Y ——

public ManaPr‘uduc‘tiunS‘tr‘a‘teg% createManaProductionStrategy () |{ return g

POverride 7 overrides A& Henrik Baerbak @ coffeelake.small22 <hbc@es.au.dk> A faCtory Creates an ObjeCt! It is nOt
public WinnerFindingStrategy createWinnerFindingStrategy() { return nd an accessor (lget’_method) on the
@EOverride 1usage 1override & Henrik Beerbak @ coffeelake.small22 <hbc@cs.au.dk> same Object every time.’

public AttackValidationStrategy createCategoryMoveValidationStrategy(

Call the method ‘createX()’
public DeckBuildingStrategy createDeckBuildingStrategy() { return new Or ImakeX(): and never ever
‘getX()’!

POverride 7 overrides A& Henrik Baerbak @ coffeelake.small22 <hbc@es.au.dk>

@EOverride 6overrides A Henrik Beerbak @ coffeelake.small22 <hbc@cs.au.dk>

public HeroBuildingStrategy createHeroBuildingStrategy() { return new

POverride 2 overrides & hbc@small22 racimo <hbc@cs.au.dk>

public RandomMumberStrategy getRandomMNumberStrategy() { return randomMWumberStrategy; }

CS@AU Henrik Baerbak Christensen 9

public class HotSeatStone {

4

AARHUS UNIVERSITET

Main Method?

« A'switch on a string’ is needed in Main():

— ‘gradle hotstone —Pvariant=alpha’

& Henrik Baerbak Christensen +2
public static void main(5tring[] args) 2 Baerbak Christensen 2

Game game = hameﬁeneratur.creuteﬁum args[8]);

DrawingEditor editor =
new MiniDrawApplication(title: "HotSeat: Variant " + args[@],
new HotStoneFactorySolution(game, Player.FINDUS,
HotStoneDrawingType.HOTSEAT_MODE))
editor.open();
Tool tool = new HotSeatStateTool(editor, game);

editor.setTool(tool);

CS@AU Henrik Baerbak Christ

abstraction does make sense!

public class GameGenerator { 13 usages & Henrik Barbak @ coffeelake.small22 <hbc@cs.

public static Game createGame(String variant) { 7usages & Henrk Baerbak @
Game game = null;

DomainFactory factory = null;

[/ Coupling: If changing this set, remember to vpdate 'creategame.htm
if (wariant.equalsIgnoreCase(anctherString: "alpha")) {
factory = new AlphaStoneFactory();
} else if (variant.equalsIgnoreCase(anotherSting: "beta")) {
factory = new BetaStoneFactory();
} else if (variant.equalsIgnoreCase(anotherSting: "gamma"}) {
factory = new GammaStoneFactory();
} else if (variant.equalsIgnoreCase(anotherSting: "delta")}) {

factory = new DeltaStoneFactory();

} else if (variant.equalsIgnoreCase(anotherString: "epsilon™)) {

factory = new EpsilonStoneFactory();

I3
return new StandardGame(factory);

10

e No Doubles in Production

AARHUS UNIVERSITET

 What is the issue with this
test stub? Bt class rarchnafSrstes sogternts restrotes |

nt index) this.index = index;

@0verride
Status usePowerChef(Game game, Player player) {
Player opponent = Player.computeOpponent(player);
1t targetIndex;

targetIndex = (int) (Math.random() * game.getFieldSize(opponent));
I

targetIndex = index;

((Cards) game.getCardInField(opponent, targetIndex)).changeHealth(
return Status.O0K;

CS@AU Henrik Baerbak Christensen 11

b Test Code in Production

AARHUS UNIVERSITET
® O ne Su Ch exa m ple # 1. Knight Capital’s $440 Million “Test Code” Disaster (2012)

Perhaps the most infamous case.

— Thanks to ChatGPT - whathappenea:

Knight Capital Group deployed a new version of their trading software to production, but one of the
eight servers still had old test code that was supposed to be removed. That old code (nicknamed "Power
Peg"”) was meant only for internal testing — it automatically placed massive buy/sell orders at high
speed to "test” trading behavior.

» Consequence:
Once deployed, the system started making huge, uncontrolled trades in real markets. Within 45 minutes,
Knight lost $440 million, effectively bankrupting the firm.

+ Takeaway:

e Test flags and dead code can be catastrophic if not removed before deployment.

Journal of Financial Economics

= Having uniform deployment and feature-flag controls across all production nodes is critical.
Volume 139, Issue 3, March 2021, Pages 922-949

Slow-moving capital and execution costs:

Evidence from a major trading glitch

incent Bogousslaveky * 5, Piarre Colin-Dufreme’® & 5 Mahmat Seglam 53 In this paper, we shed light on the importance of inventory and capital shocks by
examining the impact of a major trading glitch at a large high-frequency market-
making firm (Knight Capital, henceforth KC) on different measures of liquidity. The
glitch—originating from the erroneous implementation of a trading software—
occurred on August 1, 2012 during the first 30 minutes of trading and resulted in
numerous erroneous trades on a set of NYSE-listed stocks.

CS@AU Henrik Baerbak Christensen 12

/v

AARHUS UNIVERSITET

From 2024

- Parametric Factory

AARHUS UNIVERSITET
* What is the problem here?

StandardFactory AbstractFactory {
@0verride
ManaStrategy getManaStrategy(manaStrategyVersion)
(manaStrategyVersion)

BetaManaStrategy

DeltaManaStrategy

AlphaStoneManaStrategy

WinnerStrategy getWinnerStrategy(winnerStrategyVersion)

(winnerStrategyVersion)
BetaWinnerStrategy
GammaWinnerStrategy
ZetaWinnerStrategy

AlphaStoneWinnerStrategy

CS@AU 14

/v Kata : Trap not avoided

AARHUS UNIVERSITET
e |ssue?

FixedEuroChefType

@override
public int powerType(Hzro hero, Game game)} {
f/Random rand = new Random{);
if (hero.getType().equals{GameConstants.FRENCH_CHEF_HERO_TYPE
if{game.getFieldsize(Player . computeOpponent{hero.getOwner

))
()

Player opponent = Player.computeOpponent{hero.getOwner());

LAY

== @) { return @; }

int index = 2; // Fixed value
Card card = game.getCardInField({opponent, index);
{(StandardGame) game).damageCard(card, 2);

return 8;
} else {
if{game.getFieldSize(hero.getOuwner()) == @) { return @; }

int index = 2; // Fixed value

StandardCard card = ((5tandardCard) game.getCardInField(hero.getOwner(), index));
card.setAttack{card.gettttack() + 2};

return 8;

CS@AU Henrik Baerbak Christensen 15

/v

AARHUS UNIVERSITET

Pesky Spy Exercise

VeV First Year With Strong Spy Focus

AARHUS UNIVERSITET
e ... so pardon for annoying you with some sharp corners

* QObservation
— Atest spy is not an object that cannot have stub behavior

* Indeed — to make a MutableGameSpy work so it can help
us test the card effects, it needs to feed ‘stub’ indirect
iInput.

— Example: Brown Rice effect likely needs to call
‘game.getPlayerinTurn()’ to compute the opponent...

Y Spy With Stub Behavior

AARHUS UNIVERSITET

« S0 my spy, for testing eta stone cards does include stub
methods, like

class SpyMutableGame implements InternalMutableGame { 6 usage:

public Player getPlayerInTurn() { retuern playerInTurn; }
public void setPlayerInTurn(Player player) { playerInTurn = player; }

CS@AU Henrik Baerbak Christensen 18

/v Stubs with Stubs

AARHUS UNIVERSITET

« | saw quite a few whose card effect strategies retrieve
Hero and Card instances

— Like fetching the Card, c, that game must mutate ala
» mutableGame.reduceHealthOf(c, -2);

* Thus the ‘MutableGameSpy’ must thus make ‘stub
objects’ for Card to serve the ‘fetching’
— Card getCardInField(...); must return card objects

« ® -lots of coding...

/v One insight

AARHUS UNIVERSITET

* One insight to reduce this effort (significantly) is that
every hero and every card is identifiable via simple data

types!
— Hero ‘who is it FINDUS or PEDDERSEN’
— Card field index 0..n

« So instead of
— reduceHealthOf(Card c, int delta)
— Use
— reduceHealthOf(int fieldIndexOfCard, int delta)
« Similar for hero: use ‘Player’ as type, not ‘Hero’
— reduceHeroHealth(Player who, int delta)

eV But — it is not uncommon

AARHUS UNIVERSITET

« | used Mockito for creating test doubles for SparkJava'’s
HTTP library and ended with “deep doubling”

when(Unirest.get(path)).thenReturn{getRequest];
when(getRequest.asJson()).thenReturn(httpResponse);
when(httpResponse.getStatus()).thenReturn{HttpServietResponse.SC_0K);
when(httpResponse.getBody()).thenReturn(roomPayload);

« When GET on url

— | get a Request object

« That get a httpRequest object
— That should return OK for ‘getStatus()’

 TEDIOS to have deep path of objects to be doubled

CS@AU Henrik Baerbak Christensen 21

/v Casting Avoided?

AARHUS UNIVERSITET

* | may have said that introducing, say, MutableCard
makes StandardGame free of castings...

— Like Map<Player, List<MutableCard>> fieldMap =...
» Avoid casting to StandardCard or references to it...

— Not quite true. Free of casting to class but not free of casting to
interface

« attackCard(..., Card attackingCard, ...)
— Need to be cast ala
— MutableCard asMutableCard = (MutableCard) attackingCard,;

« Exercise:
— Why is cast to interface much better than cast to class?

